LARGE TIME BEHAVIOR OF SOLUTIONS TO NONLINEAR VISCOELASTIC MODEL WITH FADING MEMORY Dedicated to Professor Constantine M. Dafermos on the occasion of his 70th birthday
  • 【摘要】

    We?study?the?Cauchy?problem?of?a?one-dimensional?nonlinear?viscoelastic?model?with?fading?memory.?By?introducing?appropriate?new?variables?we?convert?the?integro-partial?differential?equations?into?a?... 展开>>We?study?the?Cauchy?problem?of?a?one-dimensional?nonlinear?viscoelastic?model?with?fading?memory.?By?introducing?appropriate?new?variables?we?convert?the?integro-partial?differential?equations?into?a?hyperbolic?system?of?balance?laws.?When?it?is?a?perturbation?of?a?constant?state,?the?solution?is?shown?time?asymptotically?approach-?ing?to?predetermined?diffusion?waves,?Pointwise?estimates?on?the?convergence?details?are?obtained. 收起<<

  • 【作者】

    Yanni Zeng 

  • 【作者单位】

    Department of Mathematics

  • 【刊期】

    数学物理学报(B辑英文版) ISTIC 2012年1期

  • 【关键词】

    粘弹性模型  非线性  大时间行为  记忆  Cauchy问题  积分偏微分方程  生日  衰退  hyperbolic systems of balance laws  integro-partial differential equations  viscoelasticity  large time behavior