基于SfM方法生成的密集点云数据的典型建筑物分类研究
  • 【摘要】

    建筑物类型的研究对于震后救援和损失评估具有重要作用,目前针对SfM(Structure from Motion)方法生成的三维密集点云数据的建筑物分类研究较少.首先基于SfM原理生成密集点云,然后通过建筑物单体点云高度均值和标准差对建筑物的高度和屋顶类型进行初步分类,进一步提出了建筑物单体屋顶最高点与最低点点云中心点的水平距离因子对单坡和双坡屋顶类型进行再分类的方法.以玛曲县城为研究区,使用SfM... 展开>>建筑物类型的研究对于震后救援和损失评估具有重要作用,目前针对SfM(Structure from Motion)方法生成的三维密集点云数据的建筑物分类研究较少.首先基于SfM原理生成密集点云,然后通过建筑物单体点云高度均值和标准差对建筑物的高度和屋顶类型进行初步分类,进一步提出了建筑物单体屋顶最高点与最低点点云中心点的水平距离因子对单坡和双坡屋顶类型进行再分类的方法.以玛曲县城为研究区,使用SfM算法对无人机影像进行处理,并利用上述多因子再分类方法进行建筑物高度和类型分类.实验结果表明,设置高度均值和标准差阈值分别为6m和0.25m时能够准确区分单层、非单层建筑物和平、坡屋顶类型建筑物;对于单坡和双坡顶建筑物,利用距离因子,设定距离阈值1.5m时可完全区分.对该地区典型建筑物的研究结果表明,通过基于点云分析的建筑物高度和类型提取方法,可为地震灾害风险分析和未来潜在地震灾害损失预测所需的建筑物信息的提取提供重要参考. 收起<<

  • 【作者】

    张雪华  王晓青  袁小祥  王金霞 

  • 【作者单位】

    中国地震局地震预测研究所

  • 【刊期】

    地震 ISTIC PKU 2017年3期

  • 【关键词】

    SfM  三维点云  建筑物分类  地震灾害评估  Building roof geometry feature  SfM  3D point clouds  Classifying factors 

  • 【基金项目】

    中国地震局地震行业专项