太原市PM2.5预报统计修正模型及其应用检验
  • 【DOI】

    10.13198/j.issn.1001-6929.2018.03.16

  • 【摘要】

    为提高太原市PM2.5预报准确率,更好地服务于空气质量预报预警工作,在华北区域BREMPS(环境气象数值预报系统)预报结果的基础上,结合MR(多元线性回归)、BP(BP神经网络)和MLR(多层递阶)建立10 d的滚动修正模型,并对太原市2017年1月15日-4月15日ρ(PM2.5)进行了修正.结果表明:3种修正模型对BREMPS预报的ρ(PM2.5)小时值和日均值均有不同程度的改善,尤其是MLR... 展开>>为提高太原市PM2.5预报准确率,更好地服务于空气质量预报预警工作,在华北区域BREMPS(环境气象数值预报系统)预报结果的基础上,结合MR(多元线性回归)、BP(BP神经网络)和MLR(多层递阶)建立10 d的滚动修正模型,并对太原市2017年1月15日-4月15日ρ(PM2.5)进行了修正.结果表明:3种修正模型对BREMPS预报的ρ(PM2.5)小时值和日均值均有不同程度的改善,尤其是MLR修正结果在多项评价指标上明显优于MR和BP,其小时值的RMSE(均方根误差)由原来的42.46μg/m3降至26.74μg/m3,重污染和非重污染时段日均值的RMSE分别由未修正前的63.78、43.68 μg/m3降至28.52、21.27μg/m3,日均值修正结果的基础评分从0.65升至0.88,预报准确率由原来的66.18%升至86.74%.从3种修正模型的构建来看,MR和BP方法对系统平稳状态的修正具有一定的优势,而对系统大幅变化的识别能力较弱,所以在天气变化时临界状态的修正结果误差较大,模型的稳定性较差.研究显示,MLR方法本身具有一定的自适应能力,稳定性和修正结果的整体趋势明显优于MR和BP方法,对太原市空气质量预报改进、重污染天气预警和大气污染防治等方面具有较大的应用价值. 收起<<

  • 【作者】

    张岳军  张怀德  朱凌云  何俊琦  韩照宇  冯坤 

  • 【作者单位】

    山西省气象科学研究所/山西省气象干部培训学院/山西省环境监测中心站

  • 【刊期】

    环境科学研究 ISTIC EI PKU CSSCI 2018年7期

  • 【关键词】

    PM2.5  多元线性回归  BP神经网络  多层递阶  滚动修正 

  • 【基金项目】

    科技部大气污染专项项目 山西省气象局面上项目