广义塑性梯度模型的变分原理和边界条件
  • 【DOI】

    10.3969/j.issn.1000-7598.2008.10.047

  • 【摘要】

    在广义塑性力学的双屈服面模型的体积屈服而和剪切屈服面中引进应变梯度项,构造梯度依赖的双屈服面,可以建立广义塑性梯度模型的理论框架,此时的位移率u、剪切颦性乘子率λq、体积塑性乘子率λv成了各自独立的变量.为了建立相应的数值模型,构造了增量泛函,建立并证明了3类变量(u,λq,λv)变分原理,得到应力边界条件,同时塑性乘子作为自然边界条件给出.

  • 【作者】

    何贤锋  赵冰  傅鹤林 

  • 【作者单位】

    中南大学/长沙理工大学

  • 【刊期】

    岩土力学 ISTIC EI PKU 2008年10期

  • 【关键词】

    广义塑性梯度模型  变分原理  边界条件 

  • 【基金项目】

    湖南省教育厅青年基金 湖南省自然科学基金