Secular dynamics of a lunar orbiter: a global exploration using Prony’s frequency analysis
  • 【DOI】

    10.1007/s10569-014-9540-0

  • 【摘要】

    We study the secular dynamics of lunar orbiters, in the framework of high-degree gravity models. To achieve a global view of the dynamics, we apply a frequency analysis (FA) technique which is based o... 展开>>We study the secular dynamics of lunar orbiters, in the framework of high-degree gravity models. To achieve a global view of the dynamics, we apply a frequency analysis (FA) technique which is based on Prony’s method. This allows for an extensive exploration of the eccentricity ( $e$ )—inclination ( $i$ ) space, based on short-term integrations ( $\sim $ 8 months) over relatively high-resolution grids of initial conditions. Different gravity models are considered: 3rd, 7th and 10th degree in the spherical harmonics expansion, with the main perturbations from the Earth being added. Since the dynamics is mostly regular, each orbit is characterised by a few parameters, whose values are given by the spectral decomposition of the orbital elements time series. The resulting frequency and amplitude maps in ( $e_0,i_0$ ) are used to identify the dominant perturbations and deduce the “minimum complexity” model necessary to capture the essential features of the long-term dynamics. We find that the 7th degree zonal harmonic ( $J_7$ term) is of profound importance at low altitudes as, depending on the initial secular phases, it can lead to collision with the Moon’s surface within a few months. The 3rd-degree non-axisymmetric terms are enough to describe the deviations from the 1 degree-of-freedom zonal problem; their main effect is to modify the equilibrium value of the argument of periselenium, $\omega $ , with respect to the “frozen” solution ( $\omega =\pm 90^{\circ }, \forall \Omega $ , where $\Omega $ is the nodal longitude). Finally, we show that using FA on a fine grid of initial conditions, set around a suitably chosen ‘first guess’, one can compute an accurate approximation of the initial conditions of a periodic orbit. 收起<<

  • 【作者】

  • 【刊期】

    Celestial Mechanics and Dynamical Astronomy 2014年4期

  • 【语种】

    eng